
SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE Form Approved 
OMB NO. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing, data sources 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this' 
collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports 1215 Jefferson 
Davis Highway, Suite 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washinoton DC 20S03 Jenerson 

1. AGENCY USE ONLY (Leave blank) 

4. TITLE AND SUBTITLE 

REPORT DATE 
23 March  1998 

3. REPORT TYPE AND DATES COVERED 
Final REport 

Model-Based 3-D Object  Identification 

6. AUTHOR(S) 

David Cyganski, R. F. Vaz, J.A. Orr 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 
ECE Department 
Worcester Polytechnic Institute 
100 Institute Road 
Worcester, MA 01609-7080 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

5. FUNDING NUMBERS 

DAAH04-93-G-0237 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

frfLo   3A}SH^ ~EL 

11. SUPPLEMENTARY NOTES 
Tne X!ewr °Pinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

I 12 b.   DISTRIRI ITiriM rv-inr 

19980521 075 
13. ABSTRACT (Maximum 200 words) 

The ATR technique developed in this project is based on a new non-linear pose estimator rather than on 
search mechanisms. Low false alarm rate performance is obtained by not forming a pose invariant detector 
but instead by incorporating pose dependent object information within the recognition process. The ATR is 
factored into a computationally intensive preparation process and a fast on-line target identification process. 
The approach is model-based and free of assumptions about the imaging process and object characteristics, 
and, can be applied to ATR and the estimation of pose parameters for articulated or multi-cohfiguration 
targets from image and non-image sensor data. 

In this work, the initial concept of the pose estimator for 1 DOF (degree-of-freedom) problems was developed 
into a system for N DOF whole and partially obscured target pose indexing and recognition. Performance was 
demonstrated at the level of filter bank implementations for 1 DOF problems at 1/17 the computational cost 
for unobscured targets and false alarm rates orders of magnitude better than that of the filter bank approach 
for obscured targets. The computational savings further increase with N for N DOF problems. The report 
contains ROC curves obtained from tests using the public MSTAR data set. 

14. SUBJECT TERMS Automatic Target Recognition 
Model Based ATR 
MSTAR 
INDEXING 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 
NSN 7540-01-280-5500 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER IF PAGES 
30 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

Enclosure  1 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



MODEL-BASED 3-D OBJECT IDENTIFICATION AND POSE ESTIMATION 

FROM 

LINEAR SIGNAL DECOMPOSITION AND DIRECTION OF ARRIVAL 

ANALYSIS 

DAVID CYGANSKI, RICHARD F. VAZ, JOHN A. ORR 

MARCH 23, 1998 

U.S. ARMY RESEARCH OFFICE 

GRANT NO. DAAH 04-93-G-0237 

WORCESTER POLYTECHNIC INSTITUTE 

APPROVED FOR PUBLIC RELEASE; 

DISTRIBUTION UNLIMITED. 

THE VIEWS, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT 
ARE THOSE OF THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN 

OFFICIAL DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, 
UNLESS SO DESIGNATED BY OTHER DOCUMENTATION. 

MTB QWÄLTTY IE8H10TEB J3 



Contents 

1 Problem Statement 4 

2 Summary of Results 6 

3 Initial MSTAR Performance Results 8 
3.1 The System Under Test      8 
3.2 The Prescreener  9 
3.3 Brief Review of the LSD/DOA Pose Estimator  9 
3.4 The Reduced Range Template Matcher  10 
3.5 Test Data Description     10 
3.6 Subsystem Performance      12 

3.6.1 The Prescreener  12 
3.6.2 LSD/DOA Pose Estimation  12 
3.6.3 Template Matching  12 

3.7 Performance Evaluation Procedure     14 
3.8 Test Results  14 

4 Partially Obscured Target Recognition 15 
4.1 Development of PERFORM  16 
4.2 Improved Metric Fusion Process  19 
4.3 PERFORM Evaluation Procedures, Results and Conclusions  23 

5 Conclusions 24 

6 List of Publications 26 

7 Personnel Supported and Degrees Awarded 27 

8 Inventions 28 



List of Figures 

1 LSD/DOA Block Diagram  7 
2 The ATR comprises three-stages as shown  9 
3 A more detailed representation of the pose estimation and template matching 

modules  11 
4 Input configuration illustrating the operations, including two types of median 

filters, used to preprocess the MSTAR imagery  11 
5 The discrepancy between actual and estimated azimuth angles as target pose 

and clutter image are varied  13 
6 ROC diagram for detection of a BMP-2 in patches of rural (solid-black) and 

urban (dotted-red) clutter  15 
7 ROC diagram detection of a BMP-2 over extended area (10 km2) containing 

both rural and urban scenes  16 
8 Three embedded cover filter support regions shown superimposed on one pose 

of a T72 tank target  17 
9 PERFORM system block diagram  18 
10 Magnitude of the SCCMF for each of the three covers in the example  18 
11 Merged metrics (top) and fused metrics (bottom) from 3 SCCMF in the example. 20 
12 Example unobscured and obscured target exemplars  21 
13 Merged and fused metrics for unobscured (top) and obscured (bottom) examples 21 
14 PERFORM metric fusion process  22 
15 Complete PERFORM based ATR system  23 
16 Comparison between CMF, Range Lookup LSD/DOA and PERFORM systems. 25 
17 Expanded view of ROC performance graph in previous figure  26 



1    Problem Statement 

Model-based automatic target detection and recognition (ATD&R) systems seek to establish 
the presence and identity of targets from sensed data of a scene. The goal is to be able to 
perform this recognition task despite unknown target and/or platform position and pose; this 
is accomplished by the use of a target model constructed from a priori information about 
the target. The ATD&R system in some sense compares potential targets to the models of 
all targets of interest and determines the most likely target identity. Frequently, it is also of 
interest to ascertain the position and pose in 3-space of the target. 

Typically, this task has been accomplished by the use of models comprised of large sets of 
target views, in order to allow detection of targets despite unknown position and pose. This 
approach, however, then requires a matching of potential targets with every image in every 
model, a computationally exhaustive task. The burdensome computation and enormous 
model sizes associated with this direct approach render such systems impractical for easily 
deployed, real-time ATD&R applications. Simpler "pose-invariant" models, developed by 
averaging over object poses, suffer from performance degradation due to the lack of target- 
specific information; in essence, those features which change as a target's pose is varied 
contain vital information about the nature of the target. 

This work seeks to overcome these difficulties through means of using compact target 
models which, although greatly reduced in size, retain most of the essential target identity 
and pose information. Furthermore, these models are developed in such a way that the 
recognition matching procedure is direct and non-exhaustive, so that both the storage and 
computational requirements of the technique are greatly reduced. These dramatic benefits 
are achieved by a partitioning of the problem into two components: a computationally 
intensive, off-line model construction process, and a fast, direct on-line component which 
provides target identity and pose information simultaneously. 

How these benefits can be gained from this partitioning can be seen from an analogy 
drawn to Public Key Encryption (PKE). In PKE, messages can be effortlessly decoded once 
the key to the code is found; this ease is due to the partitioning of the decryption into the 
enormously time-consuming task of finding the key and the relatively trivial decoding of the 
message using this key. The human cognitive system apparently knows the "key" which 
allows rapid object detection and pose identification from visual scenes of familiar objects. 

The ATD&R system being developed under this award, based on Linear Signal Decom- 
position and Direction of Arrival (LSD/DOA) processing operates in the same manner: each 
target model is not a literal representation of the target, but rather a decryption key for 
images of the target. With this key, decoding of the message, i.e., recognition of the target, 
is quickly accomplished. The burdensome task is to find the key. 

The basic concept for the new technique under investigation was outlined in [1], in which 
recognition and pose estimation of an object were demonstrated despite a non-trivial un- 
known pose parameter. The distinguishing characteristics of this new approach are: 

• The recognition and pose estimation procedure is fundamentally a non-linear estimator 
which achieves a high degree of noise immunity by not forming a pose invariant detector 
but instead by incorporating the object pose distribution as an integral part of the 
detection process. 



• The recognition procedure is factored into a computationally burdensome off-line model 
construction process and a fast on-line image processing process. 

• The usually intractable global optimization step associated with non-linear estimators 
is effectively and quickly solved via direction of arrival analysis, a much studied and 
well understood operation used in classic sonar processing. 

• The construction of the object model and detection process is free of assumptions about 
the imaging process and object characteristics. Hence the technique can be applied to 
the recognition and the estimation of internal (object) and external (sensor geometry) 
parameters of articulated and non-physical objects. 

In the original work, [1], we demonstrated that a compact object model constructed 
from a sufficient set of views of the object permits rapid identification of the orientation 
of the object through the use of Direction of Arrival (DOA) processing of the projection 
of new object images on the model function. The first system demonstrated a 1 degree of 
freedom (DOF) solution of this problem ([1]) for which the DOF is a non-trivial (not an 
image rotation or shift) transformation of a 3-D object. 

In brief, the originally proposed effort involved: solution of the non-linear optimization 
problems required to demonstrate multi-DOF solutions and testing of the system with non- 
simulated, truthed, data so as to produce evaluation of performance in field conditions. 
The proposal included extending this technique to the 6 DOF case and to explore the com- 
putational techniques that will make the burdensome off-line component of the processing 
practical for problems with large numbers of degrees of freedom. 

The initial work was conducted with FLIR imagery but during the first year we were di- 
rected by DARPA to concentrate efforts on wide area search applications with SAR imagery. 

In September of 1994 DARPA introduced the additional challenge of demonstrating the 
improvement that LSD/DOA achieves by a direct comparison with Composite Matched 
Filter Banks. We were also charged with finding means to determine target pose and identity 
when the target is partially obscured. 

In September 1995, at the ARPA ATR URI PI conference, we were informed that we 
would be integrated into the MSTAR effort. In particular we were asked to modify the 
research focus so as to produce an example of an MSTAR "Indexing" module. Hence, 
we modified the research focus and scheduling of our effort towards solving the problems 
associated with the proposed MSTAR module requirements. 

As will be seen in the sections below, considerable progress has been made in all of the 
above areas. 



2    Summary of Results 

In the course of this project the investigators have made significant progress with respect to 
several directions concomitant to the original and revised goals and of the project. Below is a 
brief description of the LSD/DOA pose estimation algorithm for the purpose of introducing 
certain notions and terminology that will be used to summarize our results. This is followed 
by a list of the highlights of these research results with references to the papers and theses 
in which the complete derivations may be found. 

The LSD/DOA technique provides a means for model-based ATR of targets which may 
be viewed from unknown perspectives. This technique is unique in that the models used 
encode and exploit the relationship between target pose and signature so that the detection 
process simultaneously provides both pose estimates and target identity information. These 
compact models incorporate the variation in target signature as a function of target pose, 
thus exploiting the information which is variant under changes in target orientation and 
position. Also, the target recognition process in this method is a direct computation rather 
than the search-based process required by many model-based ATR systems. 

The LSD/DOA algorithm[1] effects a partitioning of the ATR problem into two stages: 
model construction and pose estimation/recognition. The model construction process in- 
volves the solution of a large, usually over determined, set of equations to determine the ele- 
ments of a particular basis for the image suite. This Reciprocal Basis Set (RBS) is developed 
such that the pose estimation/recognition stage can be performed directly and efficiently, 
without searching or iteration. That is, the computational burden associated with the ATR 
problem is largely shifted to the model-building process in this algorithm. 

Generation of the RBS target models involves a great reduction in data, as a complete 
suite of object views is reduced to a small set of RBS elements. The number of basis elements 
used, and hence the size of the target model, can be chosen according to cost/performance 
considerations, but is in any event very modest compared to the the data from which the 
model is derived. 

The basis elements are generated such that linear projection of target images onto the 
basis elements will result in a set of inner product measures which simultaneously provide a 
sufficient statistic for target matching and represent the data from which target pose param- 
eter estimates can be determined. This is due to the fact that the RBS elements are chosen 
to encode the target pose into these inner product measures, which are called Synthetic 
Wavefront Samples (SWS). These are so named because, for a given target image the RBS 
functions have been determined such that the SWS comprise samples of a multidimensional 
complex exponential wave, the direction cosines of which reveal the pose parameters of the 
imaged target. 

A Direction of Arrival (DOA) algorithm then uses the SWS to solve for the target pose 
parameter estimates. If more RBS functions are used, then this larger target model allows 
generation of more SWS, which in turn can provide better pose estimates and more reliable 
target detection. The reader is referred to the original paper[l] for mathematical and imple- 
mentation details of the LSD/DOA algorithm; a block diagram depicting the algorithm is 
given in Figure 1. 

A brief list of major accomplishments produced in this project includes: 
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Figure 1: LSD/DOA Block Diagram 

• Developed several generalizations of the non-linear signal estimation process known as 
Direction of Arrival (DOA) analysis. This included derivation and implementation of 
N-dimensional DOA systems for known non-stationary noise statistics, and, general- 
ization of the Cramer-Rao performance bound. These generalizations were essential to 
the implementation of multi-DOF ATR systems [8, 10, 11, 13, 15]. 

• Exploration and implementation of means to parallelize the computation of large Singu- 
lar Value Decompositions as arise in the off-line component of the LSD/DOA ATR [12]. 

• Construction of multi-DOF ATRs based upon LSD/DOA and testing with 1, 2 and 3 
DOF data sets [6, 7]. 

• Construction of multiple target identification based on the LSD/DOA ATR [5]. 

• Derivation and implementation of means to construct the optimum non-stationary 
DOA estimator for a given target model [13]. 

• Implementation of a two stage ATR uses the LSD/DOA as an indexing module which 
yields a target pose estimate that drives a template matching system (reducing the 
cases that need to be tested)   [14]. 

• Development of a generalized likelihood ratio test that permits target hypothesis testing 
without reference to the original target image set. This permits a very low computation 
and storage space implementation at a moderate cost in performance [13]. 

• Implementation of several testing frameworks and test data sets that permit compu- 
tation of ATR ROC characteristics for large scale tests. A parallel implementation 
for match filter based systems permits the direct comparison of LSD/DOA and mul- 
tiple matched filter based ATRs. A large 2-DOF data set was generated using the 
XPATCH system for testing of our first multi-DOF ATR implementations. (This test 
set has been replaced by the MSTAR data set and others obtained from the industry 
based upon field data) [7, 2]. 



• Theoretical development and implementation of data fusion based system for partial 
object recognition. The pose estimation that naturally results from the LSD/DOA 
process lends itself to a very computationally attractive data fusion process in which 
the results of several LSD/DOAs sensitive to segments of the complete target are fused 
into a single high performance metric [4, 3, 14, 16]. 

• Evaluation of the LSD/DOA performance with respect to the public MSTAR data 
set. (In the course of this evaluation several new methods were developed for tuning 
LSD/DOA to the characteristics of target sets and clutter environments) [2]. 

The complete text of all references connected with the above results are all available on 
the World-Wide Web at: 
http://xfactor.wpi.edu/RecentWork.html 

The following subsections summarize the overall systems that resulted from the above 
research in the context of the most recently obtained performance results. The first summa- 
rizes the approach that was used and results obtained for the case of whole target recognition 
from SAR images in the MSTAR data set. The second summarizes the means and results 
of our investigation of partial target ATR based on the information fusion made possible by 
the pose information derived from the LSD/DOA process. 

3    Initial MSTAR Performance Results 

One of the objectives of the final stages of this work is to establish the performance of the 
LSD/DOA ATR algorithm. The testbed against which performance is to be ascertained 
was specific by DARPA as being derived from the high resolution Synthetic Aperture Radar 
(SAR) data collected as part of the DARPA/WL Moving and Stationary Target Acquisition 
and Recognition (MSTAR) program. 

3.1    The System Under Test 

The ATR under test is an indexed template matching variation of the LSD/DOA ATR 
algorithm developed in the course of this project in response to DARPA's request for a 
demonstration of indexing accomplished by application of the LSD/DOA pose estimation 
capability. 

Schematically, the algorithm may be decomposed into three stages as shown in Figure 2. 
This algorithm has been applied to detection and classification problems utilizing sensor 
modalities other than SAR, and has been adapted to accommodate partially occluded tar- 
gets [4, 3]. The Linear Signal Decomposition/Direction-of-Arrival (LSD/DOA) pose estima- 
tor is the signature stage of this ATR, and serves as an indexing module into the template 
matcher. Although the LSD/DOA pose estimation stage has been coupled successfully with 
other non-template matching target discrimination stages [1, 9], it is the template matching 
configuration shown in Figure 2 that is the concern of this performance analysis. A brief 
description of each processing stage is presented below. 
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Figure 2: The ATR comprises three-stages as shown. 

3.2    The Prescreener 

The prescreener is adapted from a description of the prescreening stage of a three-stage 
ATR system implemented by Lincoln Labs [18]. It is a two parameter CFAR detector, which 
locates candidate regions in an image that may contain targets by searching for pixels in a 
SAR image that lie on the upper tail of the clutter distribution such that 

Or. 

H0 

< 
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Hi 

(1) 

where \xc and ac are the mean and standard deviation estimations of the clutter. For the tests 
presented in this paper, the CFAR threshold, rCFAR, is set such that every target instance in 
clutter from both the test and training data sets for the ATR satisfies the lower inequality 
of the expression above. Thus the prescreener can never adversely affect the probability of 
detection for the ATR. 

3.3    Brief Review of the LSD/DOA Pose Estimator 

We recall that any vector has a unique expansion relative to some basis, and that there exists 
a dual (reciprocal) basis which can facilitate recovery of the expansion coefficients of that 
vector. Consider a vector A in terms of a basis B\... Bn of the form 

A = Y,Bne
tkn* (2) 

where the complex exponentials are the coefficients of the vector A. The dual basis, B[ 
of Si. , Bn is such that 

<B'A>=e .fcfcnc; 

B'ni 

(3) 

The form for A is intentionally suggestive. If an image point is Fourier expanded in terms of 
a pose parameter, £, then a dual basis obtained from the Fourier coefficients (corresponding 
to the basis B) could be used to recover the complex exponentials corresponding in n- 
dimensions to plane waves with direction cosines £ and sampled on a lattice defined by 
the kn. The recovery of direction cosines from wavefront samples in noise corresponds to 
the nonlinear direction-of-arrival estimation problem. The current implementation of the 
LSD/DOA module uses a direction-of- arrival estimator based on components originally 
derived by Kay [19] and Lank et ah, [20] and subsequently improved by Cyganski and 
Fräser [21]. 
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The generation of a reciprocal basis set (RBS) for each target is part of the training 
process for the ATR. RBS generation is computationally intensive, but is conducted off- 
line. Projection of a test image onto an RBS is substantially more computationally efficient. 
The ultimate result of this processing stage is an index into the template library with the 
potential to substantially reduce the volume of pose space that must be searched by the 
template matcher. 

3.4 The Reduced Range Template Matcher 

The template matcher, from Figure 2, produces a sum-of-squared-differences match metric 
between template image and the current test image window. A set of representations of a 
target sampled over some parameter vector, such as pose, comprises the template library 
for the target. The template library can be considered as a set of images sampled over 
pose space. The LSD/DOA pose estimation stage, discussed above, provides an index, k, 
(position vector) into the pose space. Viable candidate templates are those within a specified 
distance, pk, from the position, k, estimated by the LSD/DOA processing stage. Thus, there 
is a subset B^ with elements that satisfy the distance criterion given above, which becomes 
the searched part of the template library. The matching process between a test image, r, 
and templates f, might be written 

min   -—* . v o ,   > 
i    £fa-t})2where,*'eBfc, (4) 

where the summation is over the pixel locations contained within a pose dependent masked 
region, Mi, corresponding to the ith template image. The minimization is over only that 
portion of the template library f € -Bfc- 

The combination of the LSD/DOA pose estimation stage with the template matcher is 
illustrated in Figure 3. The distance pk is a design parameter obtained during the training 
phase of the ATR. 

3.5 Test Data Description 

The MSTAR program is directed toward the development of the next generation model- 
based ATR. In support of the program, a substantial data collection effort was undertaken 
with a state-of-the-art SAR sensor and consists of X-band SAR imagery with 1 foot by 1 foot 
resolution. The data sets contain a large number of target types, some in multiple versions 
and/or configurations, well-sampled over azimuth and depression angle. Clutter scenes also 
vary widely from woodlands to tilled fields to urban scenes. The target and clutter data 
used in this study are taken from the MSTAR Public Release Data set. 

MSTAR target chips are 128 by 128 pixels in size. For our purposes, the template library 
was formed by cutting these down to 48 by 48 pixel target chips and transforming to a dB 
scale. A standard median filter and a variant which excludes all pixels brighter than some 
threshold were both applied to dB-scaled imagery. Figure 4 illustrates the preprocessing 
steps applied to the MSTAR imagery before submitting it to the ATR. 

10 
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Figure 4:   Input configuration illustrating the operations, including two types of median 
filters, used to preprocess the MSTAR imagery. 
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3.6    Subsystem Performance 

Much of the performance discussion presented here is in the context of binary hypotheses: 
"No target is present" (HO) and "A target is present" (HI). The test item for all of the 
subsystem tests of the ATR is a BMP-2, sn6563, from the 17 degree depression angle imagery. 
Pose variation is restricted to one degree-of-freedom, azimuth. A single clutter image of a 
rural setting with trees (hb06158) and acquired at a depression angle of 15 degrees is used 
throughout this section on subsystem performance, except where noted otherwise. 

3.6.1 The Prescreener 

The success of the prescreening process is at one level measured by the percentage of the 
clutter image that is screened out. Using both the training and test target suites to set the 
CFAR threshold so no HI cases are screened out, it was observed on a variety of the clutter 
images that the prescreener processing stage removed 99% (hb06160, urban scene) to 99.99% 
(hb06172, tilled fields-no trees) of the background. Obviously, the computational load on 
subsequent system calculations for HO cases is markedly reduced by the prescreener. 

3.6.2 LSD/DOA Pose Estimation 

Pose estimation error can be simply defined as the difference between actual and estimated 
pose values observed for a given target. For the BMP-2 against rural clutter, the pose 
estimation error is shown in Figure 5. The error distribution in Figure 5 can be used to 
select a value for the distance p, introduced in the discussion of the template matcher above. 
For example, a value of p = 5 corresponds to a search range through the template library of 
±5 indices around the index, k, provided by the LSD/DOA module. If there are 44 images in 
the template library, then the searchable portion of the library consists of 11 images, which 
is a 75% reduction in the volume of the template library which must be searched to find the 
best match. 

3.6.3 Template Matching 

The sources of discrepancy that degrade template matching performance include registration 
error between test target and template, speckle and noise processes, discrepancy in target 
configuration between test target and template, discrepancy in versions between test target 
and template, template density in the template library, and last but not least, a range p 
around a pose index from the LSD/DOA module that does not include the actual solution 
(an out-of-bounds error). To remove configuration and version discrepancies, we tested on 
target images taken from the same set as, but disjoint from, those used to produce the 
template library. Thus registration and speckle remain as the two primary culprits affecting 
performance. 

As noted above, the LSD/DOA processing stage worked equally well with linearly scaled 
and dB scaled imagery. However, the template matcher is very sensitive to the scaling used 
and performed dramatically better with dB scaled imagery. This situation is not surprising 
given that logarithmic scaling turns multiplicative speckle into an additive process reasonably 
approximated as a Gaussian process [18]. 

12 
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Figure 5: The discrepancy between actual and estimated azimuth angles as target pose and 
clutter image are varied. 
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3.7    Performance Evaluation Procedure 

Perhaps the most common vehicle for expressing ATR performance, the receiver operating 
characteristic (ROC) diagram, plots the probability of detection against the probability 
of false alarm, or equivalently, against the false alarm rate. The ROC curve is typically 
generated by parametrically varying the boundary between the acceptance and rejection 
regions of the observation space and computing the pair of probabilities at each boundary 
value. 

The basic procedure employed in this evaluation to generate HI cases is to overlay target 
pixels from a target chip onto a 48 x 48 pixel window over a clutter image. A 48 x 48 window 
is obtained from every possible position in the clutter image, producing both HO and HI 
cases for test at every scanable pixel in the clutter image. The advantage of this approach 
is that it makes maximum use of the clutter data available. Implicit in this approach is the 
assumption that each template target and each test target overlay are both centered in the 
window for each HI trial. 

The training image set, used to construct the RBS for the LSD/DOA module and the 
template library, contains image chips of the BMP-2, sn6563, sampled at azimuth angles 

0.49       3.49       7.49     13.49     15.49     18.49     20.49 

(5) 

24.49 26.49 28.49 30.49 33.49 35.49 37.49 
39.49 43.49 45.49 47.49 49.49 51.49 55.49 
59.49 62.49 64.49 67.49 69.49 73.49 76.49 
79.49 82.49 84.49 88.49 90.49 92.49 94.49 
96.49 98.49 101.49 105.49 107.49 110.49 112.49 

115.49 118.49 

3t of test cases was sampled for the same target at azimi 

2.49 4.49 12.49 14.49 17.49 19.49 23.49 
25.49 27.49 29.49 32.49 34.49 36.49 38.49 
42.49 44.49 46.49 48.49 50.49 54.49 58.49 
60.49 63.49 65.49 68.49 70.49 74.49 78.49 
81.49 83.49 87.49 89.49 91.49 93.49 95.49 
97.49 100.49 102.49 106.49 108.49 111.49 113.49 

116.49 119.49 

(6) 

Note the two sets of images are disjoint. The target imagery corresponds to a 17 degree 
depression angle and is overlayed onto clutter imagery acquired at 15 degrees depression 
angle. 

The objective of this set of ROC curve generation tests is to establish a performance 
baseline on this target against which subsequent tests may be compared: especially tests that 
specifically incorporate Extended Operating Conditions (EOCs) [22, 23] into their design. 

3.8    Test Results 

Figure 6 shows the ROC curves for the BMP-2 against a rural scene and an urban scene 
obtained from a single 0.1 km2 clutter image. By exploiting all clutter imagery at 17 degrees 
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Figure 6: ROC diagram for detection of a BMP-2 in patches of rural (solid-black) and urban 
(dotted-red) clutter. 

depression angle available in the public MSTAR data set (a total of around 10 km2), we 
obtain an ROC describing detection performance at false alarm rates as low as 0.1 false 
alarms per km2, which is shown in Figure 7. 

4    Partially Obscured Target Recognition 

The fundamental problem in model-based ATR systems is that the targets to be detected 
have an appearance which is a function of the location and orientation of the target with 
respect to the sensing device(s). This problem is further complicated by the addition of 
partial target occlusion. 

The simplest solution to partial obscuration with a model-based approach is to train the 
obscuration into the image model. This simple method, however, is usually unusable due to 
the large complexity associated with the process of searching or training over the additional 
degrees of freedom introduced by various degrees and modes of obscuration. Some methods 
that have been implemented apply accelerated global search techniques in an attempt to 
overcome this growth in complexity. Other systems allow partial feature set matches found 
by use of rule based processing. 

Another common approach for dealing with the detection of partially occluded targets 
is the use of a match metric with appropriate behavior with respect to occlusion. These 
metrics allow, and in some cases quantify, deviations of portions of the input image from the 
target model due to partial obscuration. 

The technique explored in this part of our work, which we have named Partial Evidence 
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Figure 7: ROC diagram detection of a BMP-2 over extended area (10 km2) containing both 
rural and urban scenes. 

Reconstruction From Object Restricted Measures (PERFORM), obtains several match and 
pose values from subsystems that seek to identify portions of the object. The LSD/DOA 
based subsystems are themselves capable of finding the identity and pose of the components 
of the object. The object pose information is instrumental in fusing the several metrics into 
a single, occlusion robust, whole target metric. 

4.1    Development of PERFORM 

During our investigations into the behavior of the single RBS based LSD/DOA ATR system 
we determined that a root cause for performance loss in systems with increasingly "detailed" 
object models (contrary to the expected trend) is a concentration of ATR system reliance on 
pixels in the outer most region of target support over all poses. That is, the ATR algorithm 
attempts to glean its largest share of pose related information from the very pixels that are 
most likely to be corrupted by clutter. 

The solution that we originally applied involved use of a weighting of the pixels in the 
region of interest (ROI) in accordance with the probability that the pixel contains target 
information and not clutter. We found that a graded weighting yields far better results than 
both no weighting or the other extreme of complete deletion of these pixels (since they do 
contain valuable target pose information at times.) 

Ultimately, the best performance for LSD/DOA would be obtained for the case wherein 
the target always occupied all pixels within the convex hull of the target support regions 
over all poses. If instead, we restrict the filter support region to occupy only the area inside 
the intersection of all target support regions over all target poses, then the loss of target 

16 



Figure 8: Three embedded cover filter support regions shown superimposed on one pose of 
a T79 fnnt t.arcrpt a T72 tank target 

information causes a loss of pose estimation accuracy that offsets the benefit. 
The investigation resulted in the implementation of an approach that eliminates the 

effects of surrounding clutter while utilizing most of the pose information throughout the 
target support region. This method employs several LSD/DOA recognition systems which 
focus on well chosen subregions of the target support area. The resulting partial support 
evidence is accrued as a set of functions, that resemble conditional probability functions, to 
form a single pose estimate and single hypothesis metric. The advantages of this approach 
are summarized below: 

• By confining an RBS support region to the interior of the object support intersection 
over the full pose range, we can obtain an ideal elimination of clutter effects with an 
accompanying loss of object information and hence discrimination power. 

• By using several such embedded "cover" estimators we can develop a set of partial 
object evidence maps which can be assembled to produce a single object pose and 
identity hypothesis. 

• One obtains greatly increased robustness to object obscuration in so much as certain 
cover estimators may be altogether unaffected by partial obscuration. 

For the purposes of the first implementation we utilized just three embedded covers. 
Figure 8 depicts the three covers associated with a Soviet T72 tank target. These three 
covers are then used in the system described by Figure  9. 

In effect, each instance of the algorithm, that is, each application of a "cover" filter 
followed by the LSD/DOA ATR process, results in match metric and estimated pose infor- 
mation for a different section of the target. Each such pair can be represented as a single 
complex valued metric with phase indicating pose. The set of such metrics for each position 
of a cover filter forms a complex valued metric function for each RBS function known as the 
single cover complex metric function (SCCMF) as shown in Figure 10. 

The pose information in these functions is used to re-map the various match metric values 
to appropriate locations in a fused complex match metric information structure. The pose 
estimates themselves are "coherently" added so as to cause re-enforcement in the case of 
true targets and destructive interference otherwise. The warping function applied is based 
upon a vector flow field defined by the phase of the original complex metric value and a 
displacement value associated with that pose during the construction of the cover filters. 
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Figure 9: PERFORM system block diagram. 
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Figure 10: Magnitude of the SCCMF for each of the three covers in the example. 
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A merged version of the three cover responses, for which the warping operation was not 
applied, can be found on the top of Figure 11. As can be seen, there are three distinct 
peaks representing the peak response of the three covers. Also shown in Figure 11 is the 
final fused metric image or fused complex metric function (FCMF). The maximum response 
corresponding to the true center of the target is now clearly in evidence. 

Since the PERFORM method uses partial evidence to recognize a target, it should be 
well suited for the recognition of partially obscured targets. Figure 12 depicts an artificially 
speckled unobscured target and a partially obscured version of that target. By looking at 
the merged and fused images produced by the PERFORM method for these two targets, one 
can see the significance of the PERFORM method. 

Figure 13 shows the merged and fused metrics for the unobscured and obscured target 
respectively. As was the case in our other unobscured target example, the unobscured merged 
metric contains three distinct peaks which represent the centers of each of the three covers. 
Notice, however, that the obscured merged metric only contains two distinct peaks. This is 
due to the occlusion of most of the target associated with the third cover. 

As one can see in both of the fused metric images there is a large peak associated with 
the target center. The only difference in the metrics is that the obscured metric is slightly 
smaller due to the loss of information in the obscuration. Thus, the addition of partial 
obscuration does not make it impossible to detect the target but simply reduces the level of 
the match metric. 

4.2    Improved Metric Fusion Process 

After obtaining initially encouraging results [6], additional research was applied towards im- 
proving the PERFORM metric fusion process rather than that of the individual LSD/DOA 
subsystems. This goal was been pursued through construction of a Constant False Alarm 
Rate (CFAR) detector based on probabilistic analysis of the output of the LSD/DOA sub- 
systems. 

As before, the front end of the PERFORM ATR consists of three LSD/DOA subsystems. 
An image under test is fed into each of them producing a map of metrics and corresponding 
poses representing responses to a given cover RBS. Subsequently, all three metric/pose maps 
are processed by several stages of the algorithm with the purpose of obtaining the final, 
fused, match measure as illustrated in the flow diagram of Figure 14. 

As stated above, metrics in all of the maps are shifted by a non-linear transformation 
which is driven by the pose values associated with each metric in the metric/pose pair map, 
to a single point of reference for a given target. In the case of a T72 tank example each of 
the metrics produced by the front and rear covers of the tank are shifted to the apparent 
center of the tank according to their original locations and respective pose estimates. 

Even if a combination of the metrics would merge into a single point, however, the 
combination will still be rejected by this implementation of the system if their original 
locations indicate that it would be impossible for the pair to simultaneously correspond to 
a pose driven transformation of the rigid geometry of a tank. 

In the following stage, a set of likelihood ratio tests is performed in order to decide how 
many of the target covers are occupied by a corresponding part of a target in the test scene. 
This is not undertaken in an effort to make a final decision about the presence or absence of 
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Figure 11: Merged metrics (top) and fused metrics (bottom) from 3 SCCMF in the example. 
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Figure 12: Example unobscured and obscured target exemplars. 
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Figure 13: Merged and fused metrics for unobscured (top) and obscured (bottom) examples 
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Figure 14: PERFORM metric fusion process. 

the target at the current location, but rather in an attempt to remove from consideration all 
the metrics generated by applications of cover filters which could not possibly support the 
presence of an object within that cover region. The decision is based on an assessment of 
clutter content in the image under test by analysis of the values of the metrics obtained in 
relationship to statistical measures of the image in the cover surround. Only cases where at 
least two parts of the target are present are of concern in this particular implementation. 
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Through theoretical analysis of the subsystem metrics it was determined that the opti- 
mum decision metric is formed as a linear combination the subsystem metrics with appro- 
priate weighting factors. Thus one forms the linear combination of three metrics in the case 
of possibly three target parts present and the linear combination of just two metrics in the 
case of possibly two target parts present. 

As can be expected, interpreting both such metrics in the same way would be inappro- 
priate. The final metric, which is a composition of three subsystem metrics must be judged 
on a different basis than the two-subsystem metric based result. Hence there is a need for 
a Constant False Alarm Rate (CFAR) detector, which will establish a direct relationship 
between decision thresholds used with two and three cover metrics. 

Such a detector can be constructed analytically by computing the probabilities of false 
alarm rate for both cases, equating them and solving for the desired threshold. As a result 
two thresholds, one for the two and one for the three cover metrics, need to be calculated in 
order to make the final decision as to whether the given target is present or missing. 

A more detailed description of this analytical approach and its results are further dis- 
cussed below. 

4.3    PERFORM Evaluation Procedures, Results and Conclusions 

Although PERFORM can be used as a single stage ATR system, use of an additional stage 
such as the pre-screener can greatly reduce overall computational requirements. 

In one implementation of an ATR system by Lincoln Labs, a pre-screener is used as the 
first stage of a three-stage SAR ATR system. It is a two parameter CFAR detector, which 
locates candidates for targets in the image under test by searching for high amplitude pixels 
in a SAR image. In order to minimize the computational requirements of this stage, reduced 
resolution images are processed. In their case, the pre-screener works on one meter resolution 
images instead of the full one foot resolution imagery. Having a pre-screener at the first stage 
of a PERFORM based system greatly reduces the number of images that have to enter the 
final, computationally more intensive, classification stage. PERFORM as augmented by the 
pre-screener is shown in Figure 15. 

Input 
  

PERFORM based Detects and 
Image Classifier classifies targets 

' ' ' 

Rejects imagery without    Rejects natural and man 

potential targets made clutter 

Figure 15: Complete PERFORM based ATR system. 

The system as depicted in Figure 15 has been implemented and tested using SAR im- 
agery.  The target data was generated from spotlight SAR phase history files provided by 
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Wright Laboratories, Wright-Patterson AFB. The test results presented below are based on 
data of a Soviet T72 tank. The target exemplars were generated from L band data, a 10 
degree elevation angle, and HH and VV polarization data which were used to form a single, 
polarimetrically whitened image. 

The background data was obtained from Lincoln Laboratories (ADTS data set). The 
images used were polarimetrically whitened SAR images depicting terrain in Stockbridge 
NY at 1 ft. by 1 ft. resolution. The final test images were obtained by overlaying the targets 
onto the clutter backgrounds by masking out a region of the clutter corresponding to the 
convex hull of the brightest target pixels and inserting the target image into the masked 
area. 

Typically, simulating realistic obscuration (e.g. SAR layover) is not an easy task. For 
these initial tests, a simplified approach was taken. Portions of the target's pixels were 
replaced with clutter background on one side of a line passing through the target opposite 
the direction of illumination. The obscured target suite thus generated contained speckled 
target images with obscuration ranging from 5 to 25 percent of the target energy. 

Tests, using the same data, were performed for the LSD/DOA Range Lookup (see 
MSTAR evaluation description above), Composite Matched Filter and PERFORM ATRs. 
The results of these tests are presented as Receiver Operating Characteristic (ROC) curves 
in Figure 16 and Figure 17. Also, the ROC of the first implementation of PERFORM, which 
did not use the geometric constraints and the composite hypothesis based CFAR detection 
system, is shown on the same graph [6]. 

Applying the additional decision process to determining the occupancy of the PERFORM 
test regions, and applying the CFAR based final decision performance was improved signif- 
icantly over the initial PERFORM implementation. When tested with unobscured targets, 
the current version of PERFORM also rivals the performance of Range Lookup LSD/DOA 
and CMF based ATRs, while significantly outperforming these two systems when exposed 
to obscured targets. 

5    Conclusions 

In the course of this project we have taken the initial concept of a 1 DOF (degree-of-freedom) 
model based pose estimator based upon the computationally fast and search-mechanism free 
method first identified by the Pis and developed several end-to-end ATR systems. The 
following list summarizes the most important outcomes of this effort, the details of which 
can be found in the interim reports and publications related to this work: 

• Development and implementation of the non-linear estimator theory and algorithms 
needed to solve N-DOF ATR problems. 

• Demonstration of ATR systems for whole-target on-clutter recognition that have been 
tested with 1, 2, and 3-DOF targets and imagery (including SAR, FLIR and Optical 
image sets.) 

• Test results indicate that while constant-level-of-performance N-DOF matched filter 
bank approaches scale as KN for some constant K, the N-DOF systems based on this 
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Figure 16: Comparison between CMF, Range Lookup LSD/DOA and PERFORM systems. 

approach present computational complexity of the form (K/D)N where D is a target 
dependent factor that may be as high as 20. Thus, where computational complexity 
still grows exponentially with increasing degrees of freedom, the base of this exponential 
is much lower and the advantage (expressed as a ratio) thus also grows exponentially. 

• The pose parameter information can be used as an indexing value to drive a limited- 
search model-matching system. This pose estimator is quite robust and has been used 
to demonstrate performance equivalent to that of an exhaustive search based system 
with rj^th or fewer search trials. This approach was used to obtain the preliminary 
MSTAR based performance results shown above. 

• The pose estimation that is inherent to this ATR approach allows construction of 
a multi-look information fusion system that can be also be used for partial object 
recognition (as detailed above). 
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Figure 17: Expanded view of ROC performance graph in previous figure. 

We have both undertaken and are currently engaged in several projects based upon 
further extension, testing and technology transfer of the ATR techniques that have arisen 
from this work. 
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